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Operations on proofs that can be specified 
by means of modal logic * 

Sergei N. Artemov * 

Abstract 

Explicit modal logic was first sketched by Gödel in [19] as the logic with the atoms 
"£ is a proof of F". The complete axiomatization of the Logic of Proofs CP was found in 
[4] (see also [6],[7],[21]). In this paper we establish a sort of a functional completeness 
property of proof polynomials which constitute the system of proof terms in CP. Proof 
polynomials are built from variables and constants by three operations on proofs: "•" 
(application), tt!" (proof checker), and "+" (choice). Here constants stand for canonical 
proofs of "simple facts", namely instances of prepositional axioms and axioms of CP in a 
given proof system. We show that every operation on proofs that (i) can be specified in 
a prepositional modal language and (ii) is invariant with respect to the choice of a proof 
system is realized by a proof polynomial. 

Introduction 

The intended meaning of the intuitionistic logic was informally explained first in terms of 
operations on proofs due to Brouwer, Heyting and Kolmogorov (cf. [47],[48],[13]). This 
interpretation is widely known as the BHK semantics of intuitionistic logic. However, despite 
some similarities in the informal description of the functions assigned to the intuitionistic 
connective, the Heyting semantics and the Kolmogorov semantics have fundamentally different 
objectives. The Heyting semantics explaines intuitionistic logic in terms of an undefined notion 
of intuitionistic proof. The Kolmogorov interpretation of Xnt as a calculus of problems [24], 
along with the related papers by Gödel [18],[19] intended to interpret Xnt on the basis of 
classical proofs, thus providing an independent definition of intuitionistic logic within the 
classical mathematics. 

'Technical Report CFIS 99-02, Cornell University. Accepted for publication in the volume Advances in 
Modal Logic, II. 

'Department of Mathematics, Cornell University, email:artemovCmath.cornell.edu and Moscow Univer- 
sity, Russia. The research described in this paper was supported in part by ARO under the MURI program 
"Integrated Approach to Intelligent Systems", grant DAAH04-96-1-0341, and by DARPA under program LPE, 
project 34145. 
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BHK semantics gave rise to intensive studies of constructive semantics for intuitionistic 
theories, first of all realizability. The basic notions of readability were defined along the lines 
of BHK clauses with different constructive objects instead of proofs: computable functions 
and their codes (e.g. in [22],[23]), computable operations of higher types (e.g. in [27]), partial 
recursive operations (e.g. in [15],[16]), etc. For the references one may consult recent surveys 
on realizability and constructive semantics [8],[49]. 

Note that the standard realizability does not provide an adequate semantics for Xnt. 
First of all, following Kleene ([22]) one should distinguish between intuitionistic and classical 
understanding of realizability semantics for intuitionistic theories. Intuitionistic realizability 
enjoys some nice completeness properties but does not provide an independent semantics for 
Xnt. For example, as follows from [40], a formula F is provable in intuitionistic predicate 
logic iff all arithmetical instances of F are provably realizable in a certain extension HA+ of 
intuitionistic arithmetic. Such a result relates Xnt with a formal theory based on the same 
Xnt and thus is not intended to give an independent semantics for the latter. On the other 
hand, classical realizabilities (Kleene realizability [22], function realizability [23], modified 
realizability [27], Medvedev's calculus of finite problems [34] and its variants), give conditions 
necessary but not sufficient for 2ra£(cf.[13],[49],[50],[51]). Each of them realizes some formulas 
not derivable in Int. A formalization of the BHK semantics suggested by Kreisel in [26] also 
did not provide an adequate model for intuitionistic logic (cf. [52], [41]). For more discussion 
on realizability semantics for Xnt see [49]. 

In 1933 Gödel ([18]) defined Xnt on the basis of the notion of proof in a classical math- 
ematical system, reminiscent to the one from the classical BHK semantics. Namely, Gödel 
introduced the logic of provability (coinciding with the modal logic <S4) and constructed an 
embedding of Xnt into «S4. In [18] no formal provability semantics for «S4 was suggested. More- 
over, Gödel noticed that the straightforward interpretation of UF as the arithmetical formula 
Provable(F) 

"there exists a number x which is the code of a proof of F". 

was incompatible with «S4 (cf.[10],[ll]). 

Let us consider, for example, the first order arithmetic VA. If J. is the boolean 
constant false, then the <S4-axiom □! ->• ± becomes a statement Consis VA, ex- 
pressing the consistency of VA. By necessitation, «54 derives 0(D_L-)- _L). The 
latter formula expresses the assertion that Consis VA is provable in VA, which 
contradicts the second Gödel incompleteness theorem. 

The issue of a provability model for «S4 was studied by Gödel [19], Lemmon [31], Myhill 
[38],[39], Kripke [28], Montague [37], Mints [36], Kuznetsov & Muravitskii [30], Goldblatt 
[20], Boolos [10],[11] Shapiro [42],[43], Buss [12], Artemov [1], and many others. However, the 
problem of a formal provability semantics for «S4 has remained open. 



A principal difficulty here is caused by the existential quantifier over proofs in Provable(F). 
Indeed, the interpretation of the formula n(OF-*F) is 

'it is provable that uProvable(F) implies F" ' 

Provability in VA can be characterized as "true in all models of VA", including the non- 
standard ones. In a given model of VA an element that instantiates the variable x from the 
existential quantifier for the code of a proof of F in Provable(F) may be nonstandard. In 
such a case Provable(F) is true in this model, but there is no "real" Tl4-derivation behind 
such an x. So, VA is not able to conclude that F is true from Provable(F) is true since the 
latter formula does not necessarily deliver a proof of F. 

This consideration suggests replacing the provability formula Provable(F) by the formula 
for proofs Proof(t,F) and the existential quantifier on proofs in the former by Skolem style 
operations on proofs in the latter. Such a conversion would help to avoid evaluation of proofs 
by nonstandard numbers. 

The problem of finding the logic which accommodates the atoms t is a proof of F (the logic 
of proofs) has met considerable technical difficulties. The usual Skolem methods of converting 
quantifiers into functions do not apply here, since there are no universal laws of commutation 
of the provability operator with the quantifiers. In order to find the logic of proofs one has to 
address the issue of an appropriate set of proof terms t first. In particular, we have to figure 
out what operations on proofs are needed to express all logical laws of provability. Some of 
these operations come from the proof of Gödel's second incompleteness theorem. Within that 
proof it was established that 

VA h Provable(F -4 G) A Provable(F)  -+ Provable{G). 

This formula is a "forgetful" version of the following theorem. 

For some computable function m(x, y) 

VAV Proof(s,F-K3) A Proof{t,F)  -*•  Proof (m(s,t),G). 

A similar decoding can be done for another lemma from Gödel's second incompleteness the- 
orem VA h Provable[F) -» Provable (Provable(F)). 

For some computable function c(x) 

VA h- Proof (t, F) -»• Proof (c{i), Proof (t, F)). 

In his Lecture at ZilsePs, 1938, (published in 1995 in [19], see also [41]) Gödel sketched a 
constructive version of <S4 with the basic propositions ut is a proofof F" and operations similar 



to m(x,y) and c(x). This Gödel's suggestion in principle suffices to justify the reflexivity 
principle along with the necessitation rule. However, the questions about a complete set of 
terms and axioms for the logic of proofs, as well as the question about its ability to realize 
the entire «SI have remained unanswered. It turned out that Gödel's sketch of 1938 lacks the 
operation "+", without which a realization of Si cannot be completed. 

The complete axiomatization of the logic of proofs CP was found by the author indepen- 
dently of Godel's paper [19], which was published as late as 1995. The first presentations of 
CP took place at the author's talks at the conferences in Münster and Amsterdam in 1994. 
Preliminary versions of CP appeared in Technical Reports [4], [5], [7], cf. also the survey [21]. 
In these papers the axiom systems for CP in Hubert, Gentzen and natural deduction format 
were found, soundness and completeness with respect to the standard provability semantics 
were established. It was also discovered that given ^-derivation of a modal formula F one 
can reveal its explicit provability meaning by assigning proof terms to the modalities in such a 
way that the resulting formula Fr in the CP format is derivable in CP. This yields a positive 
solution to the problem of finding the intended provability semantics for the modal logic Si. 
Since Xnt is embedded into »94 , for example, by the Gödel translation (cf. [18], [48], [13]), 
the above realization of Sim CP simultaneously provides an adequate realization of Xnt in 
CP. Therefore, CP may be regarded as the natural formalization of the classical Brouwer- 
Heyting-Kolmogorov semantics for the intuitionistic logic. Intuitionistic logic Xnt was shown 
to be complete with respect to this semantics (this was implicitly conjectured by Kolmogorov 
in 1932). 

In CP the notion term t is a proof of F and term t has type F are subsumed by the basic 
CP proposition t:F. Under these interpretations CP naturally encompasses combinatory logic 
and A-calculi corresponding to intuitionistic and modal logics. In addition, CP is strictly more 
expressive because it admits arbitrary combinations of ":" and propositional connectives. By 
treating ":" uniformly, CP unifies the semantics of modality, combinatory, and A-terms. All 
these objects are realized as proof terms in CP. 

Gabbay's Labelled Deductive Systems ([17]) may serve as a natural framework for CP. 
Intuitionistic Type Theory by Martin-Löf [32], [33] also makes use of the format t:F with its 
informal provability reading. CP may also be regarded as a basic epistemic logic with explicit 
justifications; a problem of finding such systems was raised by van Benthem in [9]. 

In this paper we establish some sort of the functional completeness property of the system 
of CP proof terms (called proof polynomials). We show that every operation on proofs that 
(i) can be specified in a propositional modal language and (ii) is invariant with respect to the 
choice of a proof system is realized by a proof polynomial1. This theorem justifies the choice 
of the set of proof terms for CP and thus CP itself. Along with the completeness theorem for 
CP and the theorem about the realization of Si in CP ([4], [7]) this demonstrates that CP is 
indeed the logic of proofs in the format with "t is a proof of F" and Si is indeed the modal 

xThe first version of this theorem appeared in the technical report [4]. 



logic of explicit provability. In other words, given the intended provability semantics of t: F 
and OF there are no operations on proofs other than proof polynomials, no logical principles 
of proofs other than derivable in £P and no principles of provability other than derivable in 
Si. 

1    Logic of Proofs 

1.1 Definition.     The language of Logic of Proofs (£P) contains 

the usual language of classical propositional logic 
proof variables XQ, ..., xn,..., proof constants ao,..., an,... 
function symbols: monadic !, binary • and + 
operator symbol of the type "term : formula?. 

We will use a,b,c,... for proof constants, u,v,w,x,y,z,... for proof variables, i, j,k,I,m,n 
for natural numbers. Terms are defined by the grammar 

p ::= xi | a,- | \p | px -p2 | P\ +P2 

We call these terms proof polynomials and denote them by p,r,s,t— By analogy we refer to 
constants as coefficients. Constants correspond to proofs of a finite fixed set of propositional 
Schemas. We will also omit • whenever it is safe. We also assume that (a • b ■ c), (a • b • c • d), 
etc. should be read as ((c • b) ■ c), (((a • 6) • c) • d), etc. 

Using t to stand for any term and S for any propositional letter, the formulas are defined 
by the grammar 

a ::= S \ (7i—>-er2 | o-iA<r2 | <7iVer2 | ->a \ t:a 

We will use A,B,C,F,G,H,X,Y,Z for the formulas in this language, and T, A,... for the 
finite sets (also finite multisets, or finite lists) of formulas unless otherwise explicitly stated. 
We will also use x,y,z,... and p,r,s,... for vectors of proof variables and proof polynomials 
respectively. If s = («1,...., sn) and T = (Fi,..., Fn), then s: T denotes (si: Fi,..., sn: Fn), 
VT = F\ V ... V Fn, /\T = FiA ... A Fn. We assume the following precedences from highest 
to lowest: !, •, +,:, -1, A, V, -K We will use the symbol = in different situations, both formal 
and informal. Symbol = denotes syntactical identity, rE~* is the Gödel number of E. 

The intended semantics for p: F is "p is a proof of F", which will be formalized in the 
next section. Note that proof systems which provide a formal semantics for p: F are multi- 
conclusion ones, i.e. p may be a proof of several different F's (see Comment 1.7). 

1.2 Definition.     The system £P0. Axioms: 

AO. Finite set of axiom schemes of classical propositional logic in the language of CP 



Al. t:F -> F "verification" 
A2.t:(F^G) -> (s:F-+ (t-s):G) "application" 
AS. t:F -4 !i: (£: F) "proo/checker" 
A4. s:F -+ {s+t):F,     t:F-*(s+t):F "choice" 

Rule of inference: 
F-»G F 

Rl. G "modus ponens". 

The system CP is £Po plus the rule 

£2. c:A 
if A is an axiom AO - A4, and c a proof constant "axiom necessitation". 

A Constant Specification (CS) is a finite set of formulas C\ : A\,..., cn : An such that c,- is 
a constant, and F, an axiom AO - A4. Each derivation in CP naturally generates the CS 
consisting of all formulas introduced in this derivation by the necessitation rule. 

1.3 Comment. Proof constants in CP stand for proofs of "simple facts", namely propo- 
sitional axioms and axioms Al - A4. In a way the proof constants resemble atomic con- 
stant terms {combinators) of typed combinatory logic (cf. [48]). A constant cx specified as 
cj : (A -¥ (B -)• A)) can be identified with the combinator kA'B of the type A -» (B -► A). 
A constant c2 such that c2 : [(A -> {B -» C)) ->• {(A -4 B) -)• (A -4 C))} corresponds to the 
combinator sA'B>° of the type (A->(B-»C)) -»■ ((A->.B)->-(A-4C)). The proof variables 
may be regarded as term variables of combinatory logic, the operation "•" as the application 
of terms. In general an £P-formula t: F can be read as a combinatory term t of the type 
F. Typed combinatory logic CL_+ thus corresponds to a fragment of CP consisting only of 
formulas of the sort t: F where t contains no operations other than "•" and F is a formula 
built from the prepositional letters by "->" only. 

There is no restriction on the choice of a constant c in R2 within a given derivation. In 
particular, R2 allows to introduce a formula c: A(c), or to specify a constant several times 
as a proof of different axioms from AO - A4- One might restrict CP to injective constant 
specifications, i.e. only allowing each constant to serve as a proof of a single axiom A within a 
given derivation (although allowing constructions c: A(c), as before). Such a restriction would 
not change the ability of CP to emulate classical modal logic, or the functional and arithmetical 
completeness theorems for CP (below), though it will provoke an excessive renaming of the 
constants. 

Both CPo and CP enjoy the deduction theorem 

r,Ah5      =>      T\-A-+B, 



and the substitution lemma: IfT(x,P) \- B(x,P) for a propositional variable P and a proof 
variable x, then for any proof polynomial t and any formula F 

T(x/t,P/F)\-B(x/t,P/F). 

For a given constant specification CS under £P(CS) we mean £P0 plus CS.   Obviously, the 
following three statements are equivalent 

• "F is derivable in CP with a constant specification CS ", 

• CPjCS)hF 

• £Po h /\CS -» F. 

1.4 Proposition.   (Lifting lemma) Given a derivation V of the type 

one can construct a proof polynomial t(x, y) such that 

s:r,y:Ar-£pt(s,y):F. 

Proof. By induction on the derivation s:T,Ah F. If F = s, :G, G s:T, then put t :=!s,- 
and use A3. If F = Dj € A, then put t := t/j. If F is an axiom AO - A4, then pick a fresh 
proof constant c and put t := c; by R2, F \r c:F. Let F be introduced by modus ponens 
from G -± F and G. Then, by the induction hypothesis, there are proof polynomials u(s, y) 
and v(s,y) such that u:(G -¥ F) and u:G are both derivable in CP from s:T,y:A. By 42, 
s:T,y: A h (wv) :F, and we put t := w. If F is introduced by R2, then F = c: A for some 
axiom 4. Use the same R2 followed by A3: c:A -+\c:c: A, to get s:T,y: A Hc:F, and put 
t :=!c. 
4 

Note that if A \~gp F, then one can construct t(y) which is a product of proof constants and 
variables from y such that y: A \-j~p t(y):F. It is easy to see from the proof that the lifting 
polynomial t(x, y) is nothing but a blueprint of V. Thus CP accommodates its own proofs as 
terms. The necessitation rule 

\-F   =>  \-p:F for some proof polynomial p 



is a special case of Lifting. Note that here p is a blueprint of a proof of F implicitly mentioned 
in "h F". In particular, p is a ground polynomial, i.e. it does not contain variables. 

Logic of Proofs may be regarded as an explicit version of the modal logic «S4. Not only 
the forgetful projection of every theorem of CP is provable in «S4, but every theorem F of «Si 
admits an instantiation of the modalities by proof polynomials such that the resulting formula 
Fr is derivable in CP (cf. [4], [7]). The following examples show how the realization of «S4 in 
CP works. 

1.5 Example.     «94 r- (aA A OB) -4 O(AAB) 

In CP the corresponding derivation is 

1. c:(A->-(B->AAB)), by R2, 
2. x:A-+(c-x):(B-*AAB),bom 1, by A2, 
3. x:A-+(y:B-*(c-x • y):(AAß)), from 2, by A2 and propositional logic, 
4. x:AAy:B -»• (c • x • y): (AAß)), from 3, by propositional logic. 

1.6 Example.     «S4 h (OAVDB) -► G(AVB). 

In £P the corresponding derivation is 

1. a:{A-> AVB),     b:{B -> A VB), by Ä2, 
3. z:A->(a-a:):(AVß),     y:5 ->• (6-y):(AVß),from 1, by AS, 
4. {a'x):(AVB)-> (a-x+b-y):(AVB),     (b-y):(AVB) -> (a-x+b-y):(AVB), by A4, 
5. (i:AVt/:5) -»• (a-x+6-y):(AVß), from 3, by propositional logic. 

1.7 Comment. Operations "•" and "!" are present for uni-conclusion as well as multi- 
conclusion proof systems. In turn, "+" is an operation for multi-conclusion proof systems 
only. Indeed, by A4 we have s: F A t: G -¥ (s+t): F A (s+t): G, thus s + t proves different 
formulas. The differences between uni-conclusion and multi-conclusion proof systems are 
mostly cosmetic. Usual proof systems (Hilbert or Gentzen style) may be considered as uni- 
conclusion, e.g. a proof derives only the end formula (sequent) of a proof tree. On the other 
hand, the same systems may be regarded as multi-conclusion by assuming that a proof derives 
all formulas assigned to the nodes of the proof tree. The logic of strictly uni-conclusion proof 
systems was studied in [2], [3] and in [29], where it meets a complete axiomatization (system 
TCP). TCP is not compatible with any modal logic (cf. [7]). Therefore, provability as a modal 
operator corresponds to multi-conclusion proof systems. 

No single operator ut:n in CP is a normal modality since none of them satisfies the property 
t:(P-*• Q) -*(t:P -+t:Q). This makes CP essentially different from numerous polymodal 
logics, e.g. the dynamic logic of programs ([25]), where the modality is upgraded by some 
additional features. In turn, in the Logic of Proofs the modality is decomposed into a family 
of proof polynomials. 



2    Standard provability interpretation of CP 

The Logic of Proofs is meant to play for a notion of proof a role similar to that played by the 
boolean propositional logic for the notion of statement. It is shown in [4], [7] that CP enjoys 
the soundness/completeness property: 

CP h F       ■O     F is true under any interpretation . 

Any system of proofs with a proof checker operation capable of internalizing its own proofs as 
terms (cf. [45]) may be in the scope of CP. In particular, any proof system for the first order 
Peano Arithmetic VA (cf. [10], [11], [35], [46]) provides a model for CP with Gödel numbers 
of proofs being a instrument of internalizing proofs as terms. The soundness (=>■) does not 
necessarily refer to the arithmetical models. However, VA is convenient for establishing the 
completeness (<=) of CP: given CP\f F one can always find a proof system for VA along with 
an evaluation of variables in F which makes F false. 

Within this paper under Ai and Si we mean the corresponding classes of arithmetical 
predicates. We will use <p, tp to denote arithmetical formulas, /, g, h to denote arithmetical 
terms, i,j,k,l,n to denote natural numbers unless stated otherwise. We will use the letters 
u, v, w, x, y, z to denote individual variables in arithmetic and hope that a reader is able to 
distinguish them from the proof variables. If n is a natural number, then n will denote a 
numeral corresponding to n, i.e. a standard arithmetical term 0"'" where ' is a successor 
functional symbol and the number of "s equals n. We will use the simplified notation n for a 
numeral n when it is safe. 

2.1 Definition. We assume that VA contains terms for all primitive recursive functions 
(cf. [46]), called primitive recursive terms. Formulas of the form f(x) — 0 where f(x) is a 
primitive recursive term are standard primitive recursive formulas. A standard Ei formula is 
a formula 3x<p(x,y) where <p(x,y) is a standard primitive recursive formula. An arithmetical 
formula <p is provably Ei if it is provably equivalent in VA to a standard Ei formula; (p is 

. provably Ai iff both <p and -><p are provably Ei. 

2.2 Definition. A proof predicate is a provably Ai-formula Prf(x,y) such that for every 
arithmetical sentence (p 

VA\-<p   •O   for some n€w     Prf(n,r<pn) holds. 

A proof predicate Prf(x,y) is normal if the following conditions are fulfilled: 

1) (finiteness of proofs) For every proof k the set T(k) = {/ | Prf(k,l)} is finite. The 
function from k to the canonical number of T(k) is computable. 



2) (conjoinability of proofs) For any natural numbers k and / there is a natural number n 
such that 

T(k)[JT(l)CT(n). 

2.3 Comment.    Every multi-conclusion normal proof predicate can be transformed into a 
uni-conclusion one by changing from 

up proves Fu..., Fn
n       to "(p, i) proves Fit i = 1,.. .n». 

In turn, every uni-conclusion proof predicate may be regarded as normal multi-conclusion by 
reading 

up proves Ft A ... AFn"        as «p proves each of *},» = !,.. .n". 

2.4 Proposition. For every normal proof predicate Prf there are computable functions 
m{x, y), a{x, y), c{x) such that for all arithmetical formulas <p, $ and all natural numbers k n 
the following formulas are valid: ' 

Prf(k,r(p-+^) A Prf(n,rcp-,)-+Prf(m(k,n)i
ril>-T) 

Prf{k, r<p-*)-*Prf{a{k, n),r^),      Prf{n, r<p")^Prf{a{k, n), «V) 

Prf{k, ■>-•) -> Prf(c(k), rPrf(k,r^) "•). 

Proof.    The following function can be taken as m: 

Given k, n put m(k, n) = nz«Prf(z,r^"1) for all j, such that there are r<p^ib^ e 
T(k)andr^^T(ny. *    V 

Likewise, for a one could take 

Given k, n put a(k, n) = fiz T(k) U T(n) C T(z)". 

Finally, c may be put 

Given k put c(k) = vz«Prf(z, rprf(k, ■>-»)-») for all r^ € T{k) „ Such z alwayg 

exists. Indeed, Prf{k,rif) are true At formulas for every rip^ e T(k), therefore 
they all are provable in VA. Use conjoinability to find a uniform proof of all of 
them. 
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Note, that the natural arithmetical proof predicate PROOF(x,y) 
ux is the code of a derivation containing a formula with the code y". 

is an example of a normal proof predicate. 

2.5 Definition. An arithmetical interpretation * of the £P-language has the following 
parameters: 

• a normal proof predicate Pr/with the functions m(x,y), a(x,y), c(x) as in Proposition 
2.4, 

• an evaluation of propositional letters by sentences of arithmetic, and 

• an evaluation of proof variables and proof constants by natural numbers. 

Let * commute with boolean connectives, 

(t-s)* = m(t*,s*),    (t + s)* = a(t*,s*),    (!*)* = c(t*), 

(t:F)* = Prf(t*,rF*n). 

Under an interpretation * a proof polynomial t becomes a natural number £*, an /!P-formula 
F becomes an arithmetical sentence F*. A formula {t:F)* is always provably Ai. Note, that 
VA (as well as any theory containing certain finite set of arithmetical axioms, e.g. Robinson's 
arithmetic) is able to derive any true Ai formula, and thus to derive a negation of any false 
Ai formula (cf. [35]). For a set X of £P-formulas under X* we mean the set of all F*'s 
such that F € X. Given a constant specification CS, an arithmetical interpretation * is a 
CS-interpretation if all formulas from CS* are true (equivalently, are provable in VA). An 
£P-formula F is valid (with respect to the arithmetical semantics) if the arithmetical formula 
F* is true under all interpretations *. F is CS-valid if F* is true under all CS-interpretations 
*. 

In Section 3 we will need the definition of * to be extended to the language with O. Then 
we assume that (OF)* = 3yPrf{y,rF*^). 

2.6 Proposition.   (Arithmetical soundness of CPQ) 

1. IfCPQ\-F then F is valid. 
2. If CPQ h F then VA V- F* for any interpretation *. 

Proof. A straightforward induction on the derivation in CPQ. Let us check 2. for the axiom 
t:F-*F.   Under an interpretation * (t:F-+F)* = Pr/(t*,rF*"1) -» F*.   Consider two 
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possibilities. Either Prf(t*,rF*~l) is true, in which case t* is indeed a proof of F*, thus 
VAh F* and VA r- {t:F -4 F)*. Otherwise Prf (t* ,r F*^) is false, in which case being a false 
Ai formula it is refutable in VA, i.e. VA r- -,Prf{t*,rF*n) and again VA h (t:F -4 F)*. 

2.7 Corollary.   (Arithmetical soundness of CP) 

1. IfCP^S) h F then F is CS-valid. 
2. If£P(£S)\-F then VA h F* for any CS-interpretation *. 

3    Functional completeness of proof polynomials 

In this section we show some sort of functional completeness for the system of proof polyno- 
mials in CP. This provides one more justification of the choice of the basic set of operations 
•,!, + on proofs and eventually of CP itself, since no closed subsystem of the set of proof 
polynomials enjoys this functional completeness property. 

Operations on proofs invariant with respect to the choice of a proof system naturally arise 
from the notion of admissible rule in a formal system, e.g. arithmetic. 

3.1 Definition. Let £ be a logical language (propositional, first order, modal, etc.) with a 
class of its arithmetical interpretations such that for any interpretation * and any formula F 
from C an arithmetical formula F* is defined. An admissible rule in VA over £ is a figure 

r-Ci,...,l-Cn_ ,-v 

\-G 

where C\,...,C„,G are /^-formulas such that for every interpretation *, G* is provable in VA 
whenever Ci*,..., Cn* are. An admissible multi-rule in VA is a figure 

\-Cl...,hC£   or   ...   or   r-C*,...,r-C*» 
\-G , (2) 

such that for every interpretation * G* is derivable in VA whenever for some i, 0 < i < n, all 
{C})*,...,(Cf )* are derivable in VA. 

Using the modality ü to denote the provability in VA one can present and admissible rule 
(1) as the modal formula 

OCi A OC2 A ... A □<?„ -4 OG 
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and an admissible multi-rule (2) as the modal formula 

\//\DC/-»DG 
«     3 

both true in arithmetic under every interpretation. As one can see, the admissible multi-rules 
rather then the admissible rules correspond the expressive power of the modal provability 
language. 

In order to maintain a better control over the proof variables we will use the language 
of the explicit modal logic CP to describe the proof arguments of the admissible multi-rules. 
Indeed, every admissible multi-rule may be regarded as an implicit specification of a proof y 
of G as a function of proofs x^'s of C|'s. 

3.2 Definition. Let G/'s and G be formulas in the language of CP, An abstract operation 
on proofs is a formula 

\f/\xi:CJ^OG, (3) 
*'   i 

that is valid under all arithmetical interpretations. 

Since (OG)* = 3yPr/(y,rG*~l), formula (3) is a straight formalization of (2) where the 
existential quantifier over proofs in (□£?)* is an implicit specification of a proof y of G* as a 
function of x^'s. 

3.3 Example.     Some examples of abstract operations on proofs: 

i) x:(F->G)Ay:F-»ClG, 
ii) x:F->Dx:F, 
Hi) x:FAy:G-)-ü(FAG), 
iv) x:FVy:G-+G(FVG). 

For each of these examples there is a proof polynomial p realizing the operator Q in such a 
way that instantiating p inside □ gives a formula derivable in CP: 

t) £Phx:(F->G)Aj/:F-^(x-y):G, 
ii) CPh-x:F->\x:x:F, 
tit) CP h x:FAy:G -> t(x,y):(FAG), (Example 1.5) 
iv) £Phx:FVy:G-> (ax + by):(FVG). (Example 1.6) 

The following theorem demonstrates that proof existence in any abstract operation on 
proofs can be instantiated with a specific proof polynomial. 
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3.4 Theorem.    For any abstract operation on proofs 

\J/\x{:Ci-+aG 
«     3 

one can construct a proof polynomial p(x) such that 

CP\-\JJ\xi:Ci^p{S):G. 
i     3 

Proof.   Let (2) be an abstract operation on proofs, and let us denote 

*     3 

by C. Since OG -¥ G is valid, the formula C —)• G is also valid. By the completeness theorem 
for £P ([4],[7],[21]), £P \- C -> G. By Lifting Lemma 1.4 one can construct a ground proof 
polynomial t such that £P h t: {C-+G). By A2, given a fresh variable y 

£P\-y:C-+(t-y):G. (4) 

3.5 Lemma.   For any formulas A, B one can construct a proof polynomial u(x, y) such that 

£P\-x:AAy:B -+u(x,y):(x:AAy:B). 

Proof. Indeed, CP \- x : A -»Ix :x: A and £P \- y:B -+\y :y:B, by A3. By 1.5, one can 
construct a proof polynomial t such that 

£PHx:x:AA\y:y:B-*t(\x,\y):(x:AAy:B), 

thus 
CP\-x:AAy:B-*t(\x,\y):{x:AAy:B). 

3.6 Lemma.   For all formulas A, B there exists a proof polynomial v(x, y) such that 

£P\-x:AVy:B->v(x,y):(x:AVy:B). 
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Proof.    Again, £Phx:A -*!z:x:A and CPhy.B -+\y:y:B, therefore 

CPh x:AVy:B -±\x:x:AV\y:y:B. 

Consider the Constant Specification consisting of two formulas a: (x : A-* x : AVy : B) and 
b:{y:B->x:AVy:B). By A2 

£P\-\x:x:A->(a\x):(x:A\/y:B), 

£Pb\y:y:B-* (b\y):(x:AVy:B). 

By A4, 

CP\-(a\x):(x:AVy:B)V(b\y):(x:AVy:B)->(a\x + b\y):(x:AVy:B), 

therefore 
CP \-\x:x:AV\y:y:B-> (a\x+ b\y):(x:AVy:B) 

and 
CPhx:AVy:B-> (a\x + b\y):(x:AVy:B). 

3.7 Lemma.   One can construct a proof polynomial s{x) such that 

£P\-C^s(x):C. 

Proof.   A straightforward induction on the number of the outer conjunctions and disjunctions 
in the formula 

C = \J/\xi:C{. 
»'     3 

The base case C-x\B. Let s(x) be !x. By A3, CP \- x:B ->\x:x:B, thus CP h C-»s(x):C. 
There are two cases in the induction step.   If C is x : A A y : B, then use 3.5.  If C is 

x:AVy.B, then use 3.6. 

From (4), by substituting s(x) for y, we get 

CP\-s(x):C->{t-s(x)):G, 

and thus, from 3.7, we get the desired CP \- C -4 (t ■ s(x)):G. This concludes the proof of 
3.4. 
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3.8 Comment. Whereas the realization of admissible multi-rules (2) requires all three 
proof connectives -,!, +, the realization of the plain admissible rules of the form (1) does not 
require "+". 

3.9 Comment. Modulo to renaming of the operations •,!, + no proper subset T of the 
set of all proof polynomials closed under substitution is able to realize all abstract operations 
on proofs in the style of Theorem 3.4. Indeed, examples 3.3(i) and 3.3(H) specify some 
operations similar to "application" and "proof checker" respectively. By 3.3(iv), there is a 
proof polynomial t(x,y) in T such that CP' H x:FVy:F ->• t{x, y): (FVF). On the other 
hand, for some proof polynomial p from T CP \-p:(FvF -*■ F). By 3.3(i), there should be a 
proof polynomial q(x,y) from T, which is the result of the "application" of p to t(x,y) such 
that CP h t(x, y): (FVF) -)• q(x, y): F. Therefore CP \- x:FV y:F ^ q(x, y): F, and thus 
q(x,y) is an operation in T similar to "+". 

4    Acknowledgements 

I am indebted to Albert Visser who asked the question about the justification of the choice of 
the basic set of operations on proofs during one of the first presentations of CP in Amsterdam 
in 1994. The functional completeness of proof polynomials (Theorem 3.4) may be regarded 
as some sort of an answer to that natural question. 

References 

[1] S. Artemov. "Kolmogorov logic of problems and a provability interpretation of intuition- 
istic logic", Theoretical Aspects of Reasoning about Knowledge - III Proceedings, Morgan 
Kaufman PbL, pp. 257-272, 1990 

[2] S. Artemov and T. Strassen, "Functionality in the Basic Logic of Proofs", Tech.Rep. IAM 
92-004, Department for Computer Science, University of Bern, Switzerland, 1993. 

[3] S. Artemov, "Logic of Proofs," Annals of Pure and Applied Logic, v. 67 (1994), pp. 29-59. 

[4] S. Artemov, "Operational Modal Logic," Tech. Rep. MSI 95-29, Cornell University, De- 
cember 1995. 

16 



[5] S. Artemov, "Proof realizations of typed A-calculi," Tech. Rep. MSI 97-2, Cornell Univer- 
sity, May 1997. 

[6] S. Artemov, "Unified Semantics for Modality and A-terms via Proof Polynomials," to 
appear in Logic, Language and Computational, CSLI Publications, Stanford University, 
1998 (?). 

[7] S. Artemov, "Explicit provability: the intended semantics for intuitionistic and modal 
logic" Tech. Rep. CFIS 98-10, Cornell University, September 1998. 

[8] J. Avigad and S. Feferman, "GödePs Functional ("Dialectica") Interpretation". In: 
S. Buss, ed., Handbook of Proof Theory, Elsevier, pp. 337-406, 1998. 

[9] J. van Benthem. "Reflections on epistemic logic", Logique & Analyse, 133-134, pp. 5-14, 
1991 

[10] G. Boolos, The Unprovability of Consistency: An Essay in Modal Logic, Cambridge 
University Press, 1979 

[11] G. Boolos, The Logic of Provability, Cambridge University Press, 1993 

[12] S. Buss, "The Modal Logic of Pure Provability", Notre Dame Journal of Formal Logic, 
v. 31, No. 2, 1990 

[13] A. Chagrov and M. Zakharyaschev, Modal Logic, Oxford Science Publications, 1997. 

[14] D. van Dalen, Logic and Structure, Springer-Verlag, 1994. 

[15] S. Feferman, "A language and axioms for explicit mathematics". In: J.N. Crossley, ed., 
Algebra and Logic, Springer Verlag, pp. 87-139, 1975. 

[16] S. Feferman, "Constructive theories of functions and classes". In: M. Boffa, D. van Dalen, 
and K.  McAloon, eds., Logic Colloquium '78, North Holland, pp. 159-224, 1979. 

[17] DM. Gabbay, Labelled Deductive Systems, Oxford University Press, 1994. 

[18] K. Gödel, "Eine Interpretation des intuitionistischen Aussagenkalkuls", Ergebnisse Math. 
Colloq., Bd. 4 (1933), S. 39-40. 

[19] K. Gödel, "Vortrag bei Zilsel" (1938), in S. Feferman, ed. Kurt Gödel Collected Works. 
Volume III, Oxford University Press, 1995 

[20] R. Goldblatt, "Arithmetical necessity, provability and intuitionistic logic", Theoria, 44, 
pp. 38-46,1978. 

17 



[21] G. Japaridze and D. de Jongh, "The Logic of Provability", in S.R. Buss, ed., Handbook 
of Proof Theory, Elsevier Science BV, pp. 475-546, 1998 

[22] S. Kleene. "On the interpretation of intuitionistic number theory", Journal of Symbolic 
Logic, v. 10, pp. 109-124, 1945 

[23] S. Kleene. "Classical extensions of intuitionistic mathematics", In Y. Bar-Hillel, ed. 
Logic, Methodology and Philosophy of Science 2, North Holland, pp. 31-44, 1965 

[24] A. KolmogorofF, "Zur Deutung der intuitionistischen Logik," Math. Ztschr., Bd. 35 
(1932), S.58-65. 

[25] D. Kozen and J. Tiuryn, "Logic of Programs", in Handbook of Theoretical Computer 
Science. Volume B, Formal Models and Semantics, The MIT Press/Elsevier, pp. 789-840, 
1990 

[26] G. Kreisel, "Foundations of intuitionistic logic", in E.Nagel, P.Suppes and A.Tarski, 
eds., Logic, Methodology and Philosophy of Science. Proceedings of the 1960 International 
Congress, Stanford University Press, Stanford, pp. 198-210, 1962. 

[27] G. Kreisel, "On weak completeness of intuitionistic predicate logic", Journal of Symbolic 
Logic, v. 27, pp. 139-158,1962. 

[28] S. Kripke, "Semantical considerations on modal logic", Ada Philosophica Fennica, 16, 
pp. 83-94, 1963. 

[29] V.N. Krupski, "Operational Logic of Proofs with Functionality Condition on Proof Pred- 
icate", Lecture Notes in Computer Science, v. 1234, Logical Foundations of Computer 
Science'97, Yaroslavl', pp. 167-177, 1997 

[30] A.V. Kuznetsov and A.Yu. Muravitsky, "The logic of provability", Abstracts of the 4-th 
All-Union Conference on Mathematical Logic, p. 73, (Russian), 1976. 

[31] E. Lemmon, "New Foundations for Lewis's modal systems", Journal of Symbolic Logic, 
22, pp. 176-186, 1957. 

[32] P. Martin-Löf. "Constructive mathematics and computer programming", in Logic, 
Methodology and Philosophy of Science VI, North-Holland, pp. 153-175, 1982. 

[33] P. Martin-Löf. Intuitionistic Type Theory, Studies in Proof Theory, Bibliopolis, Naples, 
1984. 

[34] Yu. Medvedev, "Finite problems", Soviet Mathematics Doklady, v. 3. pp. 227-230, 1962. 

[35] E. Mendelson, Introduction to mathematical logic. Third edition., Wadsworth, 1987. 

18 



[36] G. Mints. "Lewis' systems and system T (1965-1973)". In Selected papers in proof theory, 
Bibliopolis, Napoli, 1992. 

[37] R. Montague. "Syntactical treatments of modality with corollaries on reflection principles 
and finite axiomatizability", Ada Philosophica Fennica, 16, pp. 153-168, 1963. 

[38] J. Myhill, "Some Remarks on the Notion of Proof", Journal of Philosophy, 57, pp. 461- 
471,1960 

[39] J. Myhill, "Intensional Set Theory", In: S. Shapiro, ed., IntensionalMathematics, North- 
Holland, pp. 47-61, 1985. 

[40] J. van Osten. "A semantical proof of De Jongh's theorem", Archive for Mathematical 
Logic, pp. 105-114, 1991. 

[41] C. Parsons and W. Sieg. "Introductory note to * 1938a". In: S. Feferman, ed. Kurt Gödel 
Collected Works. Volume III, Oxford University Press, pp. 62-85, 1995. 

[42] S. Shapiro. "Intensional Mathematics and Constructive Mathematics". In: S. Shapiro, 
ed., Intensional Mathematics, North-Holland, pp. 1-10, 1985. 

[43] S. Shapiro. "Epistemic and Intuitionistic Arithmetic". In: S. Shapiro, ed., "Intensional 
mathematics", North-Holland, pp. 11-46, 1985. 

[44] C. Smorynski, "The incompleteness theorems", in Handbook of mathematical logic, Am- 
sterdam; North Holland, 1977, pp. 821-865. 

[45] R. Smullyan, Diagonalization and Self-Reference, Oxford University Press, 1994 

[46] G. Takeuti, Proof Theory, North-Holland, 1975 

[47] A.S. Troelstra and D. van Dalen, Constructivism in Mathematics. An Introduction, v. 1, 
Amsterdam; North Holland, 1988. 

[48] A.S. Troelstra and H. Schwichtenberg, Basic Proof Theory, Cambridge University Press, 
1996. 

[49] A.S. Troelstra "Readability". In S. Buss, ed., Handbook of Proof Theory, Elsevier, pp. 
407-474,1998. 

[50] V.A. Uspensky, "Kolmogorov and mathematical logic", Journal of Symbolic Logic, 57, 
No.2, 1992. 

[51] V.A. Uspensky and V.E. Plisko "Intuitionistic Logic", In S.M. Nikol'ski, ed. A.N. Kol- 
mogorov, Collected works. Mathematics and Mechanics, pp. 394-404, 1985 (in Russian). 

19 



[52] S. Weinstein, "The intended interpretation of intuitionistic logic", Journal of Philosoph- 
ical Logic, 12, pp. 261-270 1983. 

20 


